Mathématiques

Question

Bonjour, voici un exercice de mathématique de mon DM sur les fonctions en seconde.

Enoncé : Un paysan possède un terrain qui a pour forme un triangle rectangle ABC, rectangle en A, avec AB = 8 dam et AC = 3 dam. Une nouvelle loi oblige notre paysan à travailler dans un champ de forme rectangulaire. Comme le paysan a construit sa grange contenant ses machines en A, il souhaite que A appartienne au champ. Enfin, pour des raisons économiques évidentes, notre paysan souhaite que son champ ait l'aire la plus grande possible. Pouvez-vous l'aider ?


Merci de me sauvé la vie, s'il vous plait !
Bonjour, voici un exercice de mathématique de mon DM sur les fonctions en seconde. Enoncé : Un paysan possède un terrain qui a pour forme un triangle rectangle

1 Réponse

  • AB = 80 mètres et AC = 40 mètres .

    Aire du terrain triangulaire = 80x40/2 = 1600 m² .

    ■ Pythagore dans ABC ( non demandé ici ! ) :

       BC² = 80² + 40² = 8000 donne BC ≈ 89,44 m .

    ■ Thalès dans le triangle :

       CN/CB = CP/CA = NP/BA

       donc  CP/80 = x/40

       donc CP = 2x .

       D' où AP = MN = 80-2x.

    ■ Aire du rectangle AMNP = (80-2x) *  x

                                                = 80x-2x² .

    ■ cherchons l' Aire maxi :

       dérivée = 80 - 4x nulle pour x = 20 mètres .

       D' où Amaxi = 40 * 20 = 800 m² = 8 dam².