Mathématiques

Question

bonsoir pouvez vous m'aider à faire ce devoir maison pour demain s'il vous plaît
bonsoir pouvez vous m'aider à faire ce devoir maison pour demain  s'il vous plaît

1 Réponse

  • Bonjour,

    B(x) = 0.5x³ - 4.5x² + 11.34x - 6    pour x ∈ [ 0.5 ; 4 ]

    Partie A

    1)  B ' (x) = 1.5x² - 9x + 11.34

    2a)  

    B ' (x) = 0     Δ = 12.96   deux solutions mais une seule est dans l'intervalle

    x = 1.8

    Tableau de variation

    x                  0.5                        1.8                         4

    B ' (x)                     positive         0      négative

    B(x)                         croissante           décroissante

    2b) Le Bénéfice sera maximal pour une production de 1800 cartes et

    B(1.8) = 2.748   donc Le bénéfice sra de 274.80 = 2.75 € arrondi à l'euro près

    3a)

    B(x) a une racine évidente

    B(3.5) = 0

    B(x) = (x - 3.5) ( 0.5x²-2.75x+1.715)

    on calcule la seconde racine en calculant

    0.5x² - 2.75x + 1.715 = 0     Δ = 4.14   deux solutions mais une seule dans l'intervalle [0.5 ; 4 ]     x = 0.717  

    correspondant à une production de 717 cartes

    b)  B(x) ≥ 0     pour x ∈ [ 0.717 ; 3.5 ]

    Le bénéfice sera nul ou positif pour une production comprise entre 717 et 3500 cartes

    PARTIE B)

    1) B"(x) = 3x-9

    2) Le point d'inflexion de la courbe C aura pour abscisse 3 puisque

    B" ( x) = 0

    3) Lorsque la production horaire augmente jusqu'à 1800 cartes , le bénéfice augmente de façon accélérée

    Lorsque la production augmente entre 1800 et 3000 cartes , le bénéfice diminue de façon accélérée

    Lorsque la production augmente entre 3000 et 3500 cartes alors le bénéfice diminue de façon ralentie

    PARTIE C)

    1) Equation tangente T à la courbe C au point d'abscisse 3 :

    y = B ' (3)(x - 3) + B(3)

    y = -2.16 (x - 3) + 1.02

    Y = -2.16x + 7.5

    La courbe C sera située en dessous de la tangente T pour x < 3 puis au-dessus pour x > 3

    Bonne journée