Bonsoir je voudrais savoir : un rectangle a pour aire 360m^2 et pour diagonale 41m. Quelles sont ses dimensions svp?
Mathématiques
LH2806
Question
Bonsoir je voudrais savoir : un rectangle a pour aire 360m^2 et pour diagonale 41m. Quelles sont ses dimensions svp?
1 Réponse
-
1. Réponse taalbabachir
Quelles sont ses dimensions
soit y : la longueur du rectangle
x : la largeur du rectangle
pour la diagonale du rectangle on peut écrire selon le théorème de Pythagore: x² + y² = 41² = 1681
l'aire du rectangle est de : x * y = 360
on peut écrire aussi x²y² = 129600
x² = 1681 - y²
(1681 - y²)y² = 129600 ⇔ - y⁴ + 1681 y² - 129600 = 0
On pose Y = y² donc on aura: - Y² + 1681 Y - 129600 = 0
Δ = 1681² - 4*129600 = 2825761 - 518400 = 2307361 ⇒ √2307361 ≈ 1519
Y1 = - 1681 + 1519)/- 2 = 81 ce résultat ne convient pas
Y2 = - 1681 - 1519)/- 2 = 1600
y² = 1600 ⇒ y = √1600 = 40 m
x² = 1681 - 1600 = 81 ⇒ x = √81 = 9 m
les dimensions du rectangle sont : longueur = 40 m
largeur = 9 m